On a rank-unimodality conjecture of Morier-Genoud and Ovsienko

Thomas McConville Kennesaw State University

Bruce Sagan Michigan State University www.math.msu.edu/~sagan

Clifford Smyth University of North Carolina, Greensboro

Poset preliminaries

The conjecture

Fences with long segments

Chain decompositions

Other work

A partially ordered set or poset is a finite set P together with a binary relation \leq such that for all $x, y, z \in P$:

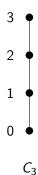
- (reflexivity) x ≤ x,
 (antisymmetry) x ≤ y and y ≤ x implies x = y,
- 3. (transitivity) $x \leq y$ and $y \leq z$ implies $x \leq z$.

We also adopt the usual conventions for inequalities. For example, $x \triangleleft y$ means $x \trianglelefteq y$ and $x \neq y$.

If $x,y \in P$ then x is covered by y or y covers x if $x \triangleleft y$ and there is no z with $x \triangleleft z \triangleleft y$. The Hasse diagram of P is the (directed) graph with vertices P and an edge from x up to y if x is covered by y.

Example: The Chain.

The *chain of length n* is $C_n = \{0, 1, ..., n\}$ and \leq is the usual \leq on the integers.

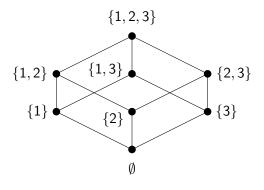


Example: The Boolean Algebra.

The Boolean algebra is

$$B_n = \{S : S \subseteq \{1, 2, \dots, n\}\}$$

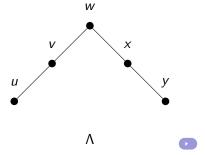
partially ordered by $S \subseteq T$ if and only if $S \subseteq T$.



Example: Lambda.

The poset lambda has elements $\Lambda = \{u, v, w, x, y\}$ with covers

$$u \triangleleft v \triangleleft w \triangleright x \triangleright y$$
.



In a poset P, a *minimal* element is $x \in P$ such that there is no $y \in P$ with $y \triangleleft x$. A *maximal* element is $x \in P$ such that there is no $y \in P$ with $y \triangleright x$.

Ex. A has minimal elements u, y and maximal element w.

A poset has a zero if it has a unique minimal element, 0.

Ex. C_n has $\hat{0} = 0$ and B_n has $\hat{0} = \emptyset$.

If $x \le y$ in P then an x-y chain of length n is

$$C: x = x_0 \triangleleft x_1 \triangleleft \ldots \triangleleft x_n = y.$$

Say C is *saturated* if all the \triangleleft are covers. **Ex.** In B_n we have

$$C:\emptyset\subset\{1,3\}\subset\{1,2,3\}$$

is an \emptyset - $\{1,2,3\}$ chain of length 2. It is not saturated. The chain

$$C': \emptyset \subset \{3\} \subset \{1,3\} \subset \{1,2,3\}$$

is saturated of length 3.

A poset P is ranked if it has a $\hat{0}$ and, for any $x \in P$, the lengths of all saturated $\hat{0}-x$ chains have the same length. The common length of these chains is the rank of x and denoted x.

Ex. Poset C_n is ranked and $\operatorname{rk} k = k$.

Poset B_n is ranked and $\operatorname{rk} S = \#S$.

Poset Λ is not ranked since it does not have a $\hat{0}$.

If P is ranked then the rank numbers of P are

$$r_k(P)$$
 = number of elements of P at rank k .

Ex. Poset C_n has $r_k(C_n) = 1$. Poset B_n has $r_k(B_n) = \binom{n}{k}$.

If P is ranked and q is a variable then P has rank generating function

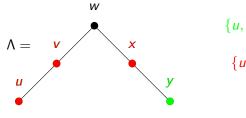
$$r(q; P) = \sum_{k} r_k(P) q^k.$$

Ex. Poset C_n has $r(C_n; q) = 1 + q + q^2 + \cdots + q^n$. Poset B_n has $r(q; B_n) = (1 + q)^n$.



A (*lower order*) *ideal* of P is a subset $I \subseteq P$ with the property that

$$y \in I$$
 and $x \le y \implies x \in I$.



$$\{u, v, y\}$$
 is an ideal

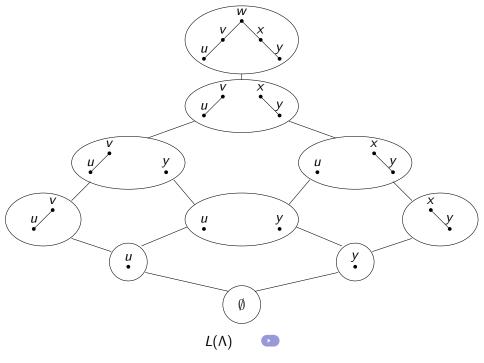
 $\{u, v, x\}$ is not an ideal

The *lattice of ideals* of *P* is the set

$$L(P) = \{I \subseteq P \mid I \text{ is an ideal of } P\}$$

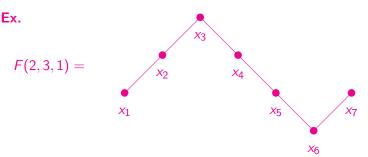
partially ordered by inclusion. The lattice $\mathcal{L}(P)$ is ranked and

$$\operatorname{rk} I = \#I.$$



Let $\alpha = (a, b, ...)$ be a *composition*, that is, a sequence of positive integers called *parts*. A *fence* is a poset $F = F(\alpha)$ with elements $x_1, ..., x_n$ and covers

$$x_1 \triangleleft x_2 \triangleleft \ldots \triangleleft x_{a+1} \triangleright x_{a+2} \triangleright \ldots \triangleright x_{a+b+1} \triangleleft x_{a+b+2} \triangleleft \ldots$$



Note that $\Lambda = F(2,2)$.

The maximal chains of F are called *segments*. Note that if $\alpha = (\alpha_1, \alpha_2, ...)$ then

$$n = \#F(\alpha) = 1 + \sum_{i} \alpha_{i}.$$

Let $L = L(\alpha)$ be the lattice of order ideals of $F(\alpha)$. These lattices can be used to compute mutations in a cluster algebra on a surface with marked points.

with marked points.		
Who	When	What
Propp	2005	perfect mathings on snake graphs
Yurikusa	2019	perfect matchings of angles
Schiffler	2008, 2010	T-paths
Schiffler		
and Thomas	2009	T-paths
Propp	2005	lattice paths on snake graphs
Claussen	2020	lattice paths of angles
Claussen	2020	S-paths

Lattice $L(\alpha)$ is ranked with rank function $\operatorname{rk} I = \#I$. We let

$$r_k(\alpha) = \#\{I \in L(\alpha) \mid \operatorname{rk} I = k\}.$$

We will also use the rank generating function

$$r(q;\alpha) = \sum_{k} r_{k}(\alpha)q^{k}.$$

This generating function was used by Morier-Genoud and Ovsienko to define q-analogues of rational numbers. Call a sequence a_0, a_1, \ldots or its generating function unimodal if there is an index m with

$$a_0 \leq a_1 \leq \ldots \leq a_m \geq a_{m+1} \geq \ldots$$

Conjecture (Morier-Genoud and Ovsienko, 2020)

For any α we have that $r(q; \alpha)$ is unimodal.

Previous work: Gansner (1982), Munarini and Salvi (2002), Claussen (2020).

Call sequence a_0, a_1, \ldots, a_n symmetric if, for all $k \leq n/2$,

$$a_k = a_{n-k}$$
.

Using an edge between a and b if a = b, symmetry looks like

Call the sequence *top heavy* or *bottom heavy* if, for all $k \le n/2$,

$$a_k \le a_{n-k}$$
 or $a_k \ge a_{n-k}$, respectively.

Using an arc from a to b if $a \le b$, top heavy looks like

Call the sequence top interlacing (TI) if

$$a_0 \leq a_n \leq a_1 \leq a_{n-1} \leq a_2 \leq \ldots \leq a_{\lceil n/2 \rceil}.$$

 a_{n-2} a_{n-1} a_n

Call the sequence bottom interlacing (BI) if

$$a_n \le a_0 \le a_{n-1} \le a_1 \le a_{n-2} \le \ldots \le a_{\lfloor n/2 \rfloor}$$
.

Note that interlacing implies unimodality and heaviness.

Conjecture (MSS)

Suppose
$$\alpha = (\alpha_1, \dots, \alpha_s)$$
.

- (a) If s is even, then $r(q; \alpha)$ is BI.
- (b) Suppose $s \ge 3$ is odd.
 - (i) If $\alpha_1 > \alpha_s$ then $r(q; \alpha)$ is BI.
 - (ii) If $\alpha_1 < \alpha_s$ then $r(q; \alpha)$ is TI.
 - (iii) If $\alpha_1 = \alpha_s$ then let $\alpha' = (\alpha_2, \dots, \alpha_{s-1})$. If $r(q; \alpha')$ is symmetric, BI or TI then $r(q; \alpha)$ is symmetric, TI, or BI, respectively.

Theorem (MSS)

Let $\alpha = (\alpha_1, \dots, \alpha_s)$ and suppose that for some t we have

$$\alpha_t > \sum_{i=1}^{n} \alpha_i$$
.

Then $r(q; \alpha)$ is unimodal.

Theorem (MSS)

Let $\alpha = (\alpha_1, \dots, \alpha_s)$ where for some t

$$\alpha_t = 1 + \sum_{i=1}^n \alpha_i.$$

If $r(q; \alpha)$ is rank symmetric, BI, or TI then so is $r(q; \beta)$ where

$$\beta = (\alpha_1, \dots, \alpha_{t-1}, \alpha_t + \mathsf{a}, \alpha_{t+1}, \dots, \alpha_s)$$

for any $a \geq 1$.

Theorem (MMS)

If α has at most three parts then $r(q; \alpha)$ is rank symmetric, BI, or TI.

The following recursion also has a version for s even.

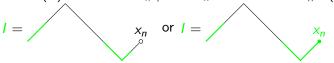
Lemma

Let
$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s)$$
. Then for s odd

$$r(q;\alpha) = r(q;\alpha_1,\ldots,\alpha_{s-1},\alpha_s-1) + q^{\alpha_s+1} \cdot r(q;\alpha_1,\ldots,\alpha_{s-2},\alpha_{s-1}-1).$$

Proof.

If $I \in L(\alpha)$ then either $x_n \notin I$ or $x_n \in I$ where $n = \#F(\alpha)$. So



Using the lemma as well as induction on $\alpha_2 + \cdots + \alpha_s$:

Theorem

We have $r(q; \alpha)$ unimodal if $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s)$ satisfies

$$\alpha_1 \geq \alpha_2 + \alpha_3 + \cdots + \alpha_s$$
.

A similar result hold when α_s plays the role of α_1 .

For long segments other than the first or last we use:

Lemma

Suppose $\alpha = (\alpha_1, \dots, \alpha_s)$, $n = \#F(\alpha)$, and for some t

$$\alpha_t \ge 1 + \sum_{i \ne t} \alpha_i. \tag{1}$$

Let S be the segment of length α_t , F' = F - S,

$$m = \#F'$$
 and $\ell = \#L(F')$

Then the maximum size of a rank of $L = L(\alpha)$ is ℓ and this maximum occurs at ranks m+1 through n-m-1.

Proof.

If $I \in L(\alpha)$ then $I = J \cup K$ where $J \in L(F')$ and $K \in L(S)$. Since L(S) is a chain, given J and $\operatorname{rk} I$, there is ≤ 1 choice for K.

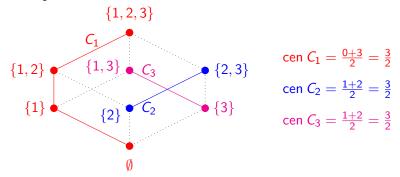
This lemma permits us to prove the two long segment results from the previous section. A *chain decomposition (CD)* of a poset P is a partition of P into disjoint saturated chains. If P is ranked then the *center* of a chain C is

$$\mathsf{cen}\; C = \frac{\mathrm{rk}(\mathsf{min}\; C) + \mathrm{rk}(\mathsf{max}\; C)}{2}.$$

A CD is *symmetric (SCD)* if for all chains C in the CD

cen
$$C = \frac{n}{2}$$
 where $n = \max_{x \in P} (\operatorname{rk} x)$.

If P has an SCD then r(q; P) is rank symmetric and unimodal. **Ex.** B_3



A CD is *top centered (TCD)* if for all chains *C* in the CD

$$cen C = \frac{n}{2} \quad or \quad \frac{n+1}{2}.$$

A bottom centered CD (BCD) has cen C = n/2 or (n-1)/2 for all chains C. If P has a TCD or BCD then its rank sequence is top or bottom interlacing, respectively.

Conjecture (MSS)

For any α , the lattice $L(\alpha)$ admits an SCD, TCD, or BCD consistent with the interlacing conjecture.

Theorem (MSS)

The previous conjecture is true if

- 1. α has at most three segments.
- 2. $\alpha = (d, 1, d, 1, d, ...)$ for some d.
- 3. Under the hypotheses of the inductive long segment result.

Let P be a poset on $[n] = \{1, 2, \ldots, n\}$. Construct the chains C_1, C_2, C_3, \ldots of a CD of L = L(P) as follows. Suppose C_1, \ldots, C_{i-1} have been constructed. Since P = [n] as sets, we can consider any ideal I of P as a subset of $\{1, \ldots, n\}$. So given two ideals, we can compare them in the lexicographic order on subsets. Now form C_i by starting with the unique ideal I_0 which has minimum rank and is also lexicographically least in

$$L'=L-(C_1\cup\cdots\cup C_{i-1}).$$

Consider all ideals of L' covering I_0 and take the lexicographically least of them to be the next element I_1 on C_i . We continue in this manner until we come to an ideal which has no cover in L' at which point C_i terminates. We have the following conjecture which we have verified for all compositions α with $\sum_i \alpha_i \leq 6$.

Conjecture

For every α there is a labeling of $F(\alpha)$ with [n] such that the correponding lexicographic CD of $L(\alpha)$ is an SCD, TCD, or BCD.

Explicit formula. There is an explicit formula for $r(q; \alpha)$ as a sum of products of powers of q and q-integers $[n]_q$. But it doesn't seem to be useful for more than 4 segments.

Partial symmetry. All fences with an odd number of segments are symmetric at the ends of the distribution.

Theorem (Elizalde and S)

Let $\alpha = (\alpha_1, ..., \alpha_s)$ where s is odd and supose $\#F(\alpha) = n$. If $k \leq \min(\alpha_1, \alpha_s)$ then

$$a_k = a_{n-k}$$

THANKS FOR

LISTENING!